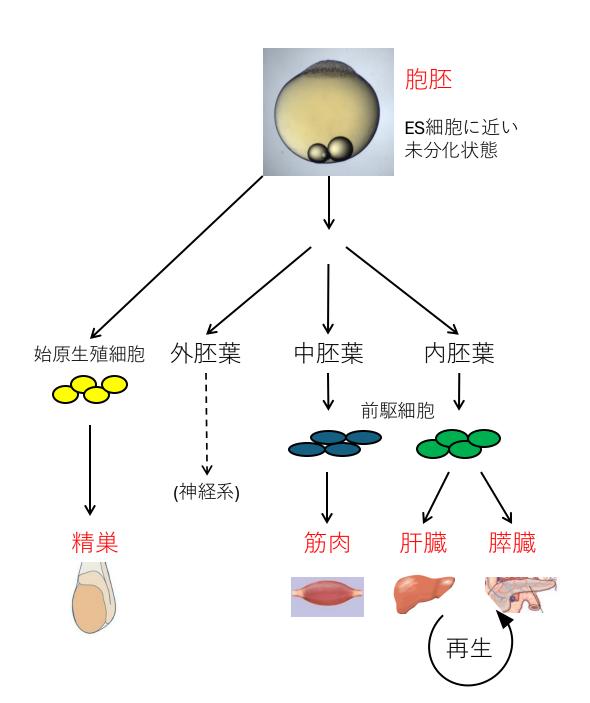
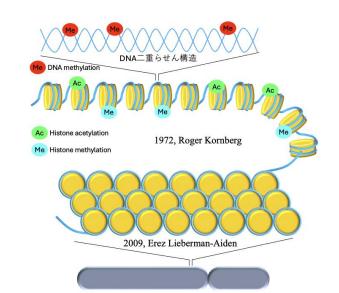

Genome Language Model


今後の方向性

森下真一

東京大学

2025年7月30日@ROIS

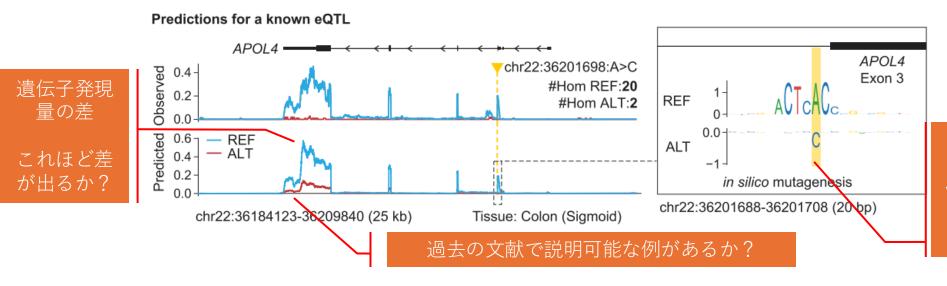


発生過程では多分化能が 獲得・維持される

疾患における変化

変化しやすい指標:

- 遺伝子発現量
- Epigenetic code
 - ✓ DNAメチル化
 - ✓ ヒストン修飾
 - ✓ ヌクレオソーム分布
- DNA 3 次元折畳み構造



Variant (変異) は病気の診断に使われ重要

疾患 X に影響する variant を<u>新たに</u>探してください

• AlhphaGenome 論文 \mathcal{O} 目玉も variant "advancing regulatory variant effect prediction with a unified DNA sequence model. preprint (2025/06/25)."

ヒントが不可欠 variant 探索用データ (UK BioBank, GWAS DB, 家系情報) 遺伝子発現量、ゲノム修飾

探索した variant を 与える 疾患 X に影響する variant を新たに探してください

Genome Language Model への問合せ例 (ChatGPT風)

- 1. UK BioBank 50万人のデータから候補遺伝子上の variant を探索し、
- 2. <u>周辺の転写物発現量(total RNA-seq)が顕著に上昇する</u>variant とその 組織を AlphaGenome で推定し、
- 3. <mark>転写量が有意に上昇する variant</mark> を見つけ、<mark>過去の文献の情報にあるか否かを確認してください</mark>

ChatGPTでは望ましい回答は無し

GLMの目標設定案

- •疾患関連 variant の探索
- 高精度ゲノムの活用
- Precision Medicine

- 項目
 - ▶ 構造多型(variant)の分析
 - ➤ 家系データ分析 孤発性疾患と de novo variant
 - AlphaGenome, Enformer, Nucleotide Transformer 等の高速実行
 - ➤ データ UK BioBank, HPRC, ENCODE, 4D Nucleosome 等の取込

関連研究 Zeng, W., Guo, H., Liu, Q. & Wong, W. H. Improving polygenic prediction from whole-genome sequencing data by leveraging predicted epigenomic features. Proc. Natl. Acad. Sci. 122, 2017 (2025).

高精度ゲノム

Human

Pangenome

Reference

Consortium

(HPRC)

代表

Benedict Paten,

Karen Miga @

UCSC

データ公開 2025/5~

> Human Pangenome 関係の論文 (今月号の *Nature*)

Article

Structural variation in 1,019 diverse humans based on long-read sequencing

https://doi.org/10.1038/s41586-025-09290-7
Received: 22 April 2024
Accepted: 16 June 2025
Published online: 23 July 2025
Open access

Check for updates

Siegfried Schloissnig¹³⁹, Samarendra Pani^{2,319}, Jana Ebler^{2,3}, Carsten Hain⁴, Vasiliki Tsapalou⁴, Arda Söylev^{2,3}, Patrick Hüther^{1,5}, Hufsah Ashraf^{2,3}, Timofey Prodanov^{2,3}, Mila Asparuhova^{1,6}, Hugo Magalhāes^{2,3}, Wolfram Höps⁷, Jesus Emiliano Sotelo-Fonseca^{6,9}, Tomas Fitzgerald¹⁰, Walter Santana-Garcia^{6,9}, Ricardo Moreira-Pinhal^{112,5}, Sarah Hunt¹⁰, Francy J. Pérez-Llanos^{3,4,5}, Tassilo Erik Wollenweber¹³, Sugirthan Sivalingam¹⁵, Dagmar Wieczorek¹⁵, Mario Cáceres^{11,23,6}, Christian Gilissen⁷, Ewan Birney¹⁰, Zhihao Ding¹⁷, Jan Nygaard Jensen¹⁷, Nikhil Podduturi¹⁷, Jan Stutzki¹⁸, Bernardo Rodriguez-Martin^{14,8,9,8,7}, Tobias Rausch^{4,8,7}, Tobias Marschall^{2,3,8,8}, Jan O. Korbel^{4,30,8,8}

Article

Complex genetic variation in nearly complete human genomes

https://doi.org/10.1038/s41586-025-09140-6

Received: 23 September 2024

Accepted: 12 May 2025

Published online: 23 July 2025

Open access

Check for updates

Glennis A. Logsdon^{12,42}, Peter Ebert^{3,442}, Peter A. Audano^{5,42}, Mark Loftus^{6,741,42}, David Porubsky¹, Jana Ebler^{4,6}, Feyza Yilmaz², Pille Hallast⁵, Timofey Prodanov^{4,8}, DongAhn Yoo¹, Carolyn A. Paisie⁸, William T. Harvey¹, Xuefang Zhao^{31,031}, Gianni V. Martino^{8,72}, Mir Henglin^{4,8}, Katherine M. Munson¹, Keon Rabbani¹³, Chen-Shan Chin¹⁴, Bida Gu¹³, Hufsah Ashraf^{4,8}, Stephan Scholz^{1,15}, Olanrewaju Austine-Orimoloye¹⁶, Parithi Balachandran⁹, Marc Jan Bonder^{17,13,19}, Haoyu Cheng²⁰, Zechen Chong²¹, Jonathan Crabtree²², Mark Gerstein^{23,24}, Lisbeth A. Guethlein²⁵, Patrick Hasenfeld²⁶, Glenn Hickey²⁷, Kendra Hoekzema¹, Sarah E. Hunt¹⁶, Matthew Jensen^{23,24}, Yuneh Jiang^{23,24}, Sergey Koren²⁸, Youngjun Kwon¹, Chong Li^{29,30}, Heng Li^{31,32}, Jiaqi Li^{23,24}, Paul J. Norman^{31,34}, Keisuke K. Oshima², Benedict Paten²⁷, Adam M. Phillippy²⁰, Nicholas R. Pollock²⁶, Tobias Rausch²⁶, Mikko Rautainen³⁶, Yuwei Song²¹, Arda Söylev⁴⁰, Arvis Sulovari¹, Likhitha Surapaneni¹⁶, Vasiliki Tsapalou²⁶, Weichen Zhou³⁶, Ying Zhou³⁷, Qihui Zhu^{3,37}, Michael C. Zody³⁸, Ryan E. Mills³⁰, Scott E. Devine²⁷, Xinghua Shi^{23,30}, Michael E. Talkowski^{80,01}, Mark J. P. Chaisson¹³, Alexander T. Dilthey^{1,15}, Miriam K. Konkel^{87,15}, Jan O. Korbel^{26,25}, Christine R. Beck^{4,308}, Evan E. Eichler^{4,002} & Tobias Marschall^{4,88}